I{UTGERS Mesenchymal Stem Cells Regulate the Epigenome of Breast Cancer Cells to Facilitate Dormancy in Bone Marrow
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Fig. 2: A. Principal component plot (PCA) from RNA-seq performed on naive and primed MSC-derived exosomes. B. Fig 5. Overarching hypothesis of thesis project. BCC-derived cytokines dictate release of epigenetic mediators from MSC via Bliss SA, et al. Cancer Res. 2016. Crea F, et al. Trends Mol Med. 2015.
Ingenuity pathway Analysis (IPA) showing that BCCs transition into a CSC-like phenotype. exosomes. The mediators induce changes in the epigenome of BCCs towards dormancy and a CSC phenotype.




